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An extension to the theory of detonation shock dynamics is made and new propaga-
tion laws are derived for steady, near-CJ (Chapman–Jouguet), weakly curved det-
onations for a chain-branching reaction model having two components. The first
is a thermally neutral induction stage governed by an Arrhenius reaction with a
large activation energy, which terminates at a location called the transition interface,
where instantaneous conversion of fuel into an intermediate species (chain radical)
occurs. The second is an exothermic main reaction layer (or chain-recombination
zone) having a temperature-independent reaction rate. We make an ansatz that the
shock curvature is sufficiently large to have a leading-order influence on the induction
zone structure, whereupon it is shown that multi-dimensional effects must necessarily
be accounted for in the main reaction layer. Only for exactly cylindrical or spherical
waves can such multi-dimensional effects be omitted. A requirement that the main
reaction layer structure pass smoothly through a sonic plane leads to a propagation
law for the detonation front: a relationship between the detonation velocity, the shock
curvature and various shock arclength derivatives of the position of the transition
interface.

For exactly cylindrically or spherically expanding waves, a multi-valued detonation
velocity–curvature relationship is found, similar to that found previously for a
state-sensitive one-step reaction. The change in this relationship is investigated
as the ratio of the length of the main reaction layer to the induction layer is
changed. We also discuss the implications of chain-branching reaction kinetics for
the prediction of critical detonation initiation energy based on detonation-velocity
curvature laws. Finally several calculations that illustrate the important effect that
arclength and transverse flow variations may have on the steady propagation of
non-planar detonation fronts are presented. Such variations may be important for
the propagation of cellular gaseous detonation fronts and for the axial propagation
of detonations in a cylindrical stick of condensed-phase explosive. We also show
that the arclength variations provide a formal mechanism for the existence of steady
non-planar detonation fronts having converging sections, a possibility ruled out for
simple irreversible one-step reaction mechanisms where only diverging steady waves
are admissible.

1. Introduction
Detonations are high-speed, shock-driven, reaction waves. Generally they propagate

at the Chapman–Jouguet (CJ) velocity DCJ for which the reaction zone solution
passes through a sonic point in a frame of reference attached to the detonation shock
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(Fickett & Davis 1979). Waves that have a velocity Dn > DCJ possess a reaction
zone solution that is subsonic throughout and rarefraction waves may continuously
attenuate the detonation velocity until D = DCJ. For Dn < DCJ, no steady solutions
are admissible (Fickett & Davis 1979). For planar detonation waves with a reaction
sequence governed by simple irreversible exothermic steps, the sonic point occurs at
the end of the reaction zone where the reactants are fully consumed.

Planar Chapman–Jouguet detonation waves are seldom observed, but curved fronts
are. Examples include detonations propagating axially in cylindrical sticks of high
explosives (Bdzil 2000), detonations in systems that undergo an area change, deton-
ations diffracting around corners and the local fronts of cellular detonations (Klein,
Krok & Shepherd 1994). Consequently there is significant interest in understanding
how the propagation speed of a detonation varies with the geometry of the non-planar
front, i.e. in the derivation of intrinsic surface propagation laws for the motion of
curved detonations.

One very successful approach employs rational asymptotic perturbation methods
and is known as detonation shock dynamics or by its acronym DSD (Bdzil 2000). It
relies on two primary assumptions: weak curvature of the detonation shock (on the
scale of the inverse of a characteristic length known as the half-reaction length l1/2);
and the front dynamics slowly evolve in time (on the scale of a particle transit time
through l1/2), so that the detonation velocity is a weak perturbation from the one-
dimensional steady velocity. Intrinsic evolution laws can be obtained asymptotically
once a reaction model is specified, and once curvature, transverse flow, velocity
and time scales are set. For curved detonations with a reaction sequence consisting
of simple irreversible exothermic steps, the sonic point is now located at a point of
incomplete reaction, i.e. interior to the reaction zone, and front evolution laws arise
by a requirement that the reaction zone solution pass smoothly through the interior
sonic point.

Much of the work on detonation shock dynamics for slowly evolving or steady
waves has been conducted for simple one-step reaction mechanisms of the form

Fuel → Product.

The rates may be either state-insensitive or state-sensitive, with the sensitivity
controlled by the activation energy of the reaction. For example, for a reaction
rate

r = k(1 − λ)ν, (1.1)

where k is the rate constant, ν < 1 is the order of the reaction and λ is the reaction
progress variable, it is found that the detonation velocity Dn depends on the shock
curvature κ (�1) in an essentially linear fashion such that

Dn = 1 − ακ + O(κ1/ν), (1.2)

where α (>0) is a constant that depends on an integral through the entire reaction
zone structure (Stewart & Bdzil 1988b). In this case κ > 0, i.e. the theory holds only
for diverging waves, since the governing equations can be re-arranged to show that
the modified thermicity (Stewart & Bdzil 1988b)

q(γ − 1)r − c2κ(Un + Dn), (1.3)

where Un is the normal component of velocity relative to the shock, must vanish at
the sonic point in order for the reaction zone solution to pass through this point
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smoothly. This can only happen for κ > 0, given the heat release q > 0, the adiabatic
exponent γ > 1, and Un + Dn > 0. Also c is the frozen (isentropic) sound speed.

On the other hand, for a highly state-sensitive reaction rate of the form

r = εk(1 − λ)ν exp

[
1

ε

(
1

c2
0

− 1

c2

)]
, (1.4)

where c0 is the one-dimensional steady sound speed behind the shock, and ε � 1
is the inverse activation energy, the detonation velocity–curvature relation takes the
form

D(1)
n +

α2

aα1

ln
[
1 − aκ (1) exp

(
bD(1)

n

)]
= 0, (1.5)

where Dn = 1 + εD(1)
n , κ = εκ (1) and a, b, α1 and α2 are order-one constants. Here

the curvature and detonation velocity are related by the scale Dn − 1 = O(κ) = O(ε).
The nonlinear relation (1.5) gives a multi-valued response; there is a critical value
of curvature beyond which no solutions exist which pass smoothly through a sonic
point.

It is important to note that for the simple rate laws (1.1) and (1.4), the detonation
velocity is apparently solely a function of the weak curvature of the detonation shock
to leading order. Generally, this can happen in one of two ways: either the detonation
front is expanding in an exactly cylindrical or spherical fashion; or transverse flow
effects, i.e. spatial variations along the arclength of the shock, turn out to have a
weaker effect than curvature and thus do not contribute to the evolution law at the
orders considered. We will show in the following that while the latter is true for
the evolution law (1.2), under the scales for which the evolution law (1.5) is derived,
transverse flow effects cannot be ignored in general and thus equation (1.5) only
formally applies under the first of these conditions, i.e. in the context of exactly
cylindrically or spherically expanding waves.

Little work has been conducted on propagation laws for non-planar detonations
with more realistic chemical reaction pathways. Exceptions include numerical studies
by Sharpe (2000a) for a two-step sequential reaction A → B, B → C, with the second
reaction endothermic, and Sharpe (2000b) for a one-step reversible reaction. Klein
(1991) has also examined an extension of detonation shock dynamics for the one-
step reversible reaction. The subject of the present work is a theory of detonation
shock dynamics for steadily propagating waves in systems representative of realistic
chain-branching kinetics. Specifically we study a two-step chain-branching reaction
sequence, a model motivated by the three-step chain-branching model previously
studied by Short & Quirk (1997) and Short, Kapila & Quirk (1999). These types of
models have been extensively used for the purposes of large-scale computations
of detonation behaviour due to their ability to capture the essential dynamics of real
chain-branching reactions, e.g. Oran & Boris (1987), Oran, Jones & Sichel (1992),
Kailasanath et al. (1991).

Our particular model has two components: a thermally neutral chain-branching
induction zone and an exothermic main reaction layer or chain-recombination layer
of finite extent. We note that this mimics the actual structure of detonations not only
in gaseous systems but also in condensed-phase explosives. The extent of the induction
zone is controlled by a reaction rate of Arrhenius form, but no heat is released due
to reaction. This mimics the fact that chain-initiation and chain-branching reactions
typically liberate only a small amount of heat, while the length of the induction zone
is a sensitive function of the shock state. The end of the induction zone corresponds
to the point where a rapid conversion of fuel into radical species occurs as in Short
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& Quirk (1997). The reaction rate in the exothermic chain-recombination or main
reaction layer is taken to be independent of temperature, typical of many chain-
termination reactions. The ratio of the length of the induction layer to the main
reaction layer is controlled by the rate constant in the main reaction layer, and plays
the role of the chain-branching cross-over temperature in Short & Quirk (1997).
Although this model falls short of full reaction kinetics, in contrast to the classical
one-step Arrhenius model it does retain some of the essential chemical dynamics of
a real chain-branching reaction.

One of the major results that arises from the present study is that, in general,
variations in the detonation velocity and curvature with arclength of the detonation
shock cannot be neglected in highly state-sensitive systems, including the one-step
reaction (1.4) (He & Clavin 1994; Klein et al. 1994; Yao & Stewart 1995). We show
results that illustrate the difference between the propagation of exactly cylindrically
or spherically propagating detonations with one step and the model two-step chain-
branching reactions, and discuss the implications of chain-branching reaction kinetics
for predictions of critical detonation initiation energy based on detonation-velocity
curvature laws. Finally we conduct some calculations that illustrate the important
effect that arclength and transverse flow variations may have on the steady propaga-
tion of non-planar detonation fronts. We also demonstrate that arclength variations
provide an avenue through which a steady non-planar detonation front may have
regions of negative curvature, i.e. be of a converging nature. Such regions are not
possible when arclength variations are omitted.

2. Model
The motion of a steady detonation in a Cartesian system is modelled by the reactive

Euler equations,

∇ · (ρu) = 0, (u · ∇)u = − 1

ρ
∇p, (u · ∇)e + p(u · ∇)

(
1

ρ

)
= 0, (2.1)

with rate equations

(u · ∇)λi = ri, (2.2)

for density ρ, pressure p, velocity u, specific internal energy e and reaction progress
variable for the ith reaction λi . These are augmented by the equations of state,

T = c2 =
γp

ρ
, e =

p

(γ − 1)ρ
−

∑
qiλi , (2.3)

where c is the sound speed, T is the temperature, γ the adiabatic exponent and qi the
heat release for the ith reaction. Density has been scaled with the quiescent upstream
density ρ̃, velocity with the steady one-dimensional Chapman–Jouguet velocity D̃CJ,
temperature with D̃2

CJ, and pressure with ρ̃D̃2
CJ. The heat release qi is scaled with

D̃2
CJ, while the length scale is taken as the one-dimensional steady induction zone

length, defined below. For gaseous systems γ < 5/3, while it is assumed that for solid
explosives γ ∼ 3.

The detonation structure is determined by specification of the reaction rate kinetics.
As in Short (2001), a two-step chain-branching reaction model is employed having two
components: a thermally neutral chain-branching induction zone and an exothermic
main reaction layer (or chain-recombination layer) of finite extent, as shown in
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Figure 1. A schematic of the steady detonation structure for the two-step chain-branching
reaction model.

figure 1. The rate equations may be written in the form

(u · ∇)λ1 = H (1 − λ1)r1, (u · ∇)λ2 = (1 − H (1 − λ1))r2, (2.4)

where λ1 and λ2 are the reaction progress variables in the induction and main reaction
layers respectively and H ( ) is the usual Heaviside function.

2.1. Induction zone reaction rate

The induction zone dynamics are controlled by a reaction rate of Arrhenius form
in which no heat is released due to reaction. This mimics the property that chain-
initiation and chain-branching reactions typically liberate only a small amount of
heat. Therefore, in the induction zone q1 = 0, and

r1 = k1 exp

[
1

ε

(
1

c2
0

− 1

c2

)]
, (2.5)

where c0 is the one-dimensional steady sound speed at the shock, k1 is a rate constant
and ε is the inverse activation energy, assumed small, so that

ε � 1. (2.6)

Based on the scaling that the one-dimensional steady induction zone length is unity,
the rate constant k1 is set accordingly to

k1 = −Un0, (2.7)

where Un0 is the one-dimensional steady velocity at the shock. At the shock λ1 = 0,
while the termination of the induction zone is signalled when λ1 = 1, where fuel is
instantaneously converted into chain-radical.

2.2. Main heat release layer reaction rate

The reaction rate in the exothermic chain-recombination layer (q2 = O(1) > 0) is
assumed to be independent of the local thermodynamic state, a reasonable model for
chain-termination reactions. A reaction rate of the well-known form

r2 = k(1 − λ2)
ν (2.8)

is assumed, where k is the rate constant. The size of k then determines the ratio of
the length of the chain-recombination layer (main reaction layer) to the induction
zone layer. For k = O(1), the two layers of are similar size, while for k � 1, the
chain-recombination layer is much longer than the induction zone layer. Also, λ2 = 0
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Figure 2. A schematic of a curved detonation shock propagating along its normal with local
velocity Dn(ξ ) and curvature κ = φ,ξ .

marks the start of the main heat release layer, beyond which chain recombination of
the chain radical occurs and heat is released, while λ2 = 1 signals the rear equilibrium
state of the detonation. The parameter ν is the order of reaction. In the following
we take ν = 1/2, a choice which negates the need to consider a separate transonic
layer analysis (Stewart & Bdzil 1988a, b; Klein & Stewart 1993). Situations for which
1/2 < ν � 1 will be considered in the future.

2.3. Bertrand-intrinsic coordinates

To study the steady propagation of curved detonations, it is convenient to transform
to a system of shock-attached coordinates (see Stewart & Bdzil 1988b and Yao &
Stewart 1996 for a detailed description of the coordinate system employed). We use
the Bertrand-intrinsic system, defined by a normal n̂ pointing towards the unreacted
material (figure 2). The coordinate system is defined by lines instantaneously normal
to the shock surface along which the non-dimensional normal distance n to the shock
is measured, and by the transverse non-dimensional arclength along the shock ξ̄ .

Barred quantities represent non-dimensional, but as yet unscaled variables. We use
Dn to denote the normal detonation velocity, Un the normal flow velocity relative to
the shock, and uξ the transverse flow velocity. In this frame, the shock curvature is
defined as the derivative of the shock angle φ̄ (the angle, as a function of ξ̄ , between
the normal propagation direction of the curved shock and the direction in which the
one-dimensional planar wave would move) with respect to the arclength ξ̄ . The full
reactive Euler equations in this system are given in the Appendix.

2.4. Transverse flow and curvature scalings

Detonation shock dynamics involves subscale modelling for the propagation of curved
detonation waves. It is based on two main assumptions: (i) weak curvature of
the detonation shock; and (ii) the front dynamics slowly evolving in time, so that the
detonation velocity is a weak perturbation from the one-dimensional steady velocity.
Intrinsic evolution laws can be obtained asymptotically once curvature, velocity and
time scales are set. Therein lies one of the major difficulties with the theory of
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detonation shock dynamics: for a given reaction mechanism how are these scales
related, and how do the scales, and consequently the form of intrinsic evolution
equation, vary with changes in reaction mechanisms (Bdzil 2000)?

On the assumption that we seek an asymptotic solution for weak curvature, we
may propose general scales for the shock angle φ̄ and arclength ξ̄ as

φ̄ = O(ω) � 1, ξ̄ = 1/O(µ) � 1, (2.9)

so that the curvature has size

κ̄ =
∂φ̄

∂ξ̄
= O(ωµ) � 1. (2.10)

Assuming the detonation velocity remains close to its one-dimensional steady value,
we can define the detonation velocity expansion

Dn = 1 + O(D′
n), D′

n � 1. (2.11)

One relation between these three scales is provided by the geometric compatibility
conditions,

B̄
∂φ̄

∂ξ̄
= −∂Dn

∂ξ̄
,

∂B̄

∂ξ̄
= κ̄Dn, (2.12a, b)

where B is a quantity that represents the instantaneous rate of change of arclength
along the shock. Given (2.9)–(2.11), (2.12b) implies B̄ = O(ω), from which it follows
that B̄(∂φ̄/∂ξ̄ ) = O(ω2µ) and ∂Dn/∂ξ̄ = O(µD′

n). Then the compatibility condition
(2.12a) specifies that the shock angle scaling ω should be of the order of the square
root of the velocity perturbation scale D′

n, or D′
n = O(ω2). Finally, the relation between

ω and µ, which determines the curvature, must be determined by the physics one
desires to capture in the intrinsic evolution law. For instance, two physically important
scalings include the cases where the shock curvature is sufficiently large that it has a
leading-order influence on the induction zone structure behind the shock in a curved
detonation wave, or alternatively, the shock curvature is sufficiently weak that the
induction zone is quasi-one-dimensional. For each of these choices, the influence of
curvature on the detonation structure is then determined by the ratio of the lengths
of the chain-induction to chain-branching zones.

With the above general scalings, one can define a set of O(1) scaled variables,

φ =
φ̄

ω
, ξ = µξ̄, κ =

κ̄

ωµ
, B =

B̄

ω
, (2.13)

leading to the representation of equations (2.1)–(2.4) in the Bertrand-intrinsic system
given in the Appendix. Note that the transverse momentum equation shows

ūξ = O(µ), (2.14)

from which an O(1) transverse velocity may be defined,

uξ = ūξ /µ. (2.15)

For the model reaction scheme under investigation, we anticipate that deviations
of the detonation velocity Dn from its one-dimensional value will be of O(ε) based
on the form of the Arrhenius reaction rate,

Dn = 1 + εD(1)
n . (2.16)
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This specifies the shock angle scaling ω to be

ω =
√

ε. (2.17)

Finally, making the ansatz that curvature of the detonation front should influence the
induction zone structure (Buckmaster 1989; Klein et al. 1994; Yao & Stewart 1995),
i.e. κ̄ = O(ε), then specifies the arclength scaling

µ =
√

ε. (2.18)

With these scalings, the divergence of the flow that results from the curvature of the
shock has a non-trivial influence on the induction zone solution (Buckmaster 1989).

2.5. Reduced equations

With the scalings (2.16)–(2.18) fixed, the full system of equations in the Appendix
can now be simplified. Keeping only terms on the right-hand side of the mass,
n-momentum and energy equations (A 1), (A 2), (A 4) that are of O(ε), and terms on
the right-hand side of the ξ -momentum (A 3) and rate equation (A 5) that are O(1),
a set of reduced equations in the intrinsic frame can be written such that

mass:

∂

∂n
(ρUn) = −εκρ(Un + Dn) − ε

[
∂

∂ξ
(ρuξ ) + B

∂ρ

∂ξ

]
, (2.19)

n-momentum:

Un

∂Un

∂n
+

1

ρ

∂p

∂n
= −ε(uξ + B)

∂Un

∂ξ
, (2.20)

ξ -momentum:

Un

∂uξ

∂n
= − 1

ρ

∂p

∂ξ
, (2.21)

energy:

Un

∂e

∂n
− p

ρ2
Un

∂ρ

∂n
= −ε(uξ + B)

(
∂e

∂ξ
− p

ρ2

∂ρ

∂ξ

)
, (2.22)

reaction:

Un

∂λi

∂n
= ri . (2.23)

The terms on the right-hand sides of (2.19)–(2.23) represent arclength flow variations,
recalling that

κ = κ(ξ ), Dn = Dn(ξ ). (2.24)

To the order of analysis to be conducted in the following, termination of right-hand
sides of (2.19)–(2.23) at the order shown will be sufficient. Note that in conservative
form, the n-momentum and energy equations become

∂

∂n

(
p + ρU 2

n

)
= −εκρUn(Un + Dn) − UnR1 − ρR2 (2.25)

and

∂

∂n

(
U 2

n

2
+

c2

(γ − 1)
−

∑
qiλi

)
= −R2 − R3

Un

, (2.26)
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where

R1 = ε

[
∂

∂ξ
(ρuξ ) + B

∂ρ

∂ξ

]
, R2 = ε(uξ + B)

∂Un

∂ξ
, R3 = ε(uξ + B)

(
∂e

∂ξ
− p

ρ2

∂ρ

∂ξ

)
.

(2.27)

2.6. Shock conditions

The relations governing the motion of the shock into a uniform ambient material in
the Bertrand system are

(Un)s = − Dn

(γ + 1)

[
γ − 1 +

2δ

D2
n

]
, (uξ )s = 0,

ρs = (γ + 1)

(
γ − 1 +

2δ

D2
n

)−1

, ps =
1

(γ + 1)

(
2D2

n − (γ − 1)

γ
δ

)
.




(2.28)

Here the subscript s denotes the shock state, while δ is given by

δ =
γ p̃

ρ̃D̃2
CJ

, (2.29)

where p̃ is the dimensional ambient upstream pressure. Note that δ can be calculated
from the equation for the Chapman–Jouguet detonation velocity

D̃CJ√
γ p̃/ρ̃

=

√
1 + Q

(γ 2 − 1)

2γ
+

√
Q

(γ 2 − 1)

2γ
, (2.30)

where Q = γ Q̃/c̃2
0 is the Erpenbeck scaled heat release (Short & Stewart 1998).

3. Induction zone analysis
Based on the reaction rate (2.5) and scalings (2.16)–(2.18), we expect deviations of

the detonation velocity from the Chapman–Jouguet value Dn = 1 to be of O(ε), or

Dn = 1 + εD(1)
n , ε � 1. (3.1)

Correspondingly the shock conditions (2.28) can be expanded to O(ε),

ρs = ρ0 + ερ1s, ps = p0 + εp1s, (Un)s = Un0 + εUn1s , (3.2)

where

ρ0 =
(γ + 1)

γ − 1 + 2δ
, p0 =

1

(γ + 1)

(
2 − (γ − 1)

γ
δ

)
, Un0 =

1 − γ − 2δ

1 + γ
(3.3)

is the unperturbed shock state and

ρ1s =
4δ(γ + 1)

(γ − 1 + 2δ)2
D(1)

n , p1s =
4

(γ + 1)
D(1)

n , Un1s =
1 + 2δ − γ

(γ + 1)
D(1)

n (3.4)

represent the O(ε) corrections. In the main bulk of the induction zone, we define
expansions

ρ ∼ ρ0 + ερ1, Un ∼ Un0 + εUn1, p ∼ p0 + εp1, e ∼ e0 + εe1, (3.5)
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where uξ = O(ε) since uξ = 0 at n = 0. Since there is no heat release in the induction
zone, the equations to be satisfied to O(ε) are

∂

∂n
(ρUn) = −εκρ(Un + Dn), Un

∂Un

∂n
+

1

ρ

∂p

∂n
= 0, Un

∂e

∂n
− p

ρ2
Un

∂p

∂n
= 0. (3.6)

Substituting (3.5) and solving for the O(ε) correction terms gives

ρ1 − ρ1s = nκ

[
ρ0Un0(1 + Un0)(
γp0/ρ0 − U 2

n0

)
]
, p1 − p1s = nκ

[
γp0Un0(1 + Un0)(
γp0/ρ0 − U 2

n0

)
]
,

Un1 − Un1s = nκ

[
γp0Un0(1 + Un0)(
γp0/ρ0 − U 2

n0

)
]
.




(3.7)

Thus the variation in the induction zone structure is the result of the curvature of
the shock front. According to the rate equation (2.4), the induction zone progress
variable λ (dropping the subscript 1) increases from zero at the shock to one at the
end of the induction zone, where fuel is converted instantaneously into chain radical.
Then,

Un0

∂λ

∂n
= −Un0 exp

[
1

ε

(
1

c2
0

− 1

c2

)]
. (3.8)

Substituting for c2 = γp/ρ, and using (3.5) to expand for p and ρ, (3.8) becomes

∂λ

∂n
= −exp

[
γ (γ − 1)e1s

c4
0

]
exp[anκ], (3.9)

where

a = −2
(γ − 1)

(γ + 1)

1

δ̃
, (γ − 1)e1s =

p1s

ρ0

− p0

ρ2
0

ρ1s, (3.10)

and

δ̃ =
γp0

ρ0

=
(2γ − δ(γ − 1))(γ − 1 + 2δ)

(γ + 1)2
. (3.11)

Integrating equation (3.9), subject to λ = 0 at n = 0, gives

λ = exp

[
γ (γ − 1)e1s

c4
0

][
1

aκ
(1 − exp[anκ])

]
. (3.12)

The end of the induction zone, the transition interface n = N (ξ ), is signalled when
λ = 1, whereupon

n = N (ξ ) =
1

aκ
log

[
1 − aκ exp

[
bD(1)

n

]]
, (3.13)

with

b = − 4γ (γ − 1)

δ̃2(γ + 1)2

(
1 +

δ2

γ

)
. (3.14)
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Thus N (ξ ) is a nonlinear function of the shock curvature κ and the O(ε) detonation
velocity perturbation D(1)

n . In particular,

N,ξ = −κ,ξ

κ

(
N + exp

[
bD(1)

n − aκN
])

− b

κ
D

(1)
n,ξ exp

[
bD(1)

n − aκN
]

= O(1), (3.15)

so that O(ε) variations in Dn lead to O(1) variations in the distance between the
shock and transition interface N as ξ varies along the shock. Importantly, it will turn
out that this property will lead to the generation of O(ε) transverse flow variations
in the main reaction layer that appear at the same order as terms that arise due to
curvature variations.

In this context, Klein (1991) has suggested that arclength variations may need to
be considered in the transonic layer of a time-varying convergent detonation having
a two-step reaction model similar to that considered above. Also, Aslam, Bdzil &
Hill (1998) have shown that for a state-independent reaction model, transverse flow
variations play an important role in defining higher-order corrections to the linear
Dn−κ propagation law (1.2).

4. Main reaction layer
4.1. Analysis for k = O(1)

We first investigate the case where the lengths of the induction zone and main heat
release layer are of similar magnitude, i.e. the rate constant k = O(1). To begin the
analysis of the main reaction layer, a transformation to a coordinate frame based in
the transition interface n = N (ξ ) is made, where

(n, ξ ) → (m, ξ ), m = n − N (ξ ), (4.1)

so that

∂

∂n
→ ∂

∂m
,

∂

∂ξ
→ −Nξ

∂

∂m
+

∂

∂ξ
. (4.2)

After transforming (2.19)–(2.22), the leading-order solution in the main reaction layer
is obtained via an expansion of the form

ρ(m, ξ ) ∼ ρ(0)(m) + O(ε), p(m, ξ ) ∼ p(0)(m) + O(ε), Un(m, ξ ) ∼ U (0)
n (m) + O(ε),

(4.3)

which satisfy

∂

∂m

(
ρ(0)U (0)

n

)
= 0,

∂

∂m

(
p(0) + ρ(0)U (0) 2

n

)
= 0,

∂

∂m

(
U (0) 2

n

2
+

c(0) 2

(γ − 1)
− qλ(0)

)
= 0.

(4.4)

These equations are easily identified as those of Rankine–Hugoniot form that govern
the one-dimensional steady detonation solution. In particular, ρUn = −1 + O(ε). To
O(ε), (2.19)–(2.23) become in the transformed plane:

mass:

∂

∂m
(ρUn) = −εκρ(Un + Dn) + εN,ξ

∂

∂m
(ρ(uξ + B)) − ερ

∂uξ

∂ξ
, (4.5)
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n-momentum:

∂

∂m

(
p + ρU 2

n

)
= εκ(Un + Dn) − εN,ξ

∂uξ

∂m
+ ε

∂uξ

∂ξ
, (4.6)

ξ -momentum:

∂uξ

∂m
= −N,ξ

∂Un

∂m
, (4.7)

energy:

∂

∂m

(
U 2

n

2
+

c2

(γ − 1)
− qλ

)
= εN,ξ (uξ + B)

∂Un

∂m
, (4.8)

reaction progress:

∂λ

∂m
=

r

Un

, (4.9)

where (4.4) has been used in simplifying the O(ε) expressions on the right-hand sides,
and the subscript 2 has been dropped from the reaction progress variable λ and the
reaction rate r. There are three types of terms that contribute to the right-hand sides.
The first are those that involve modifications of the main reaction layer structure due
to the curvature κ of the shock. The second are those that involve the term N,ξ , and
represent modifications of the main reaction layer structure due to the variation of
the position of the transition interface with arclength, where N,ξ = O(1). The third are
those that involve u,ξ , the transverse flow variations induced by streamline deflection
at n = N.

To facilitate the integration of these equations, it is convenient to transform to the
reaction progress variable coordinate system, i.e. from (m, ξ ) to (λ, ξ ), where λ = 0
corresponds to m = 0 or n = N (ξ ). The transverse momentum equation (4.7) can be
integrated to give

uξ = −N,ξ (Un − Un0). (4.10)

Using (4.10), the mass, momentum and energy equations (4.5), (4.6), (4.8) then integrate
to

ρUn = ρNUnN + εκ

∫ λ

0

1

r
(Un + Dn) dλ − εN2

,ξ [ρ(Un − Un0)]

+ εN,ξB(ρ − ρ0) − εN,ξξ

∫ λ

0

Un − Un0

r
dλ, (4.11)

p + ρU 2
n = pN + ρNU 2

nN + εκ

∫ λ

0

Un

r
(Un + Dn) dλ

+ εN 2
,ξ (Un − Un0) − εN,ξξ

∫ λ

0

Un

r
(Un − Un0) dλ, (4.12)

U 2
n

2
+

c2

γ − 1
− qλ =

U 2
nN

2
+

c2
N

γ − 1
− ε

N 2
,ξ

2
(Un − Un0)

2 + εN,ξB (Un − Un0), (4.13)

where the subscript N denotes the state at λ= 0, or n= N (ξ ). A perturbation solution
may now be found in the form

ρ ∼ ρ(0) + ερ(1), p ∼ p(0) + εp(1), Un ∼ U (0)
n + εU (1)

n . (4.14)
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The leading-order solution is simply the Rankine–Hugoniot relations for the one-
dimensional Chapman–Jouguet wave, given by

U (0)
n = − γ − l

γ + 1
− δ

1 + l

γ + 1
, ρ(0) =

γ + 1

γ − l + δ(1 + l)
,

p(0) =
1 + l

γ + 1
+

δ

γ + 1

(
1

γ
− l

)
,


 (4.15)

where

l = (1 − λ)1/2. (4.16)

For Chapman–Jouguet waves, the parameter δ (2.29) is related to the heat release q

via the expression

δ = 1 −
√

2q(γ 2 − 1) > 0. (4.17)

Also, the sonic parameter

η =
[
U (0)

n

]2 − γp(0)

ρ(0)
→ 0 (4.18)

as λ → 1, indicating the sonic nature of the equilibrium flow in the Chapman–Jouguet
wave.

The solution of the first-order problem y = [ρ(1), U (1)
n , p(1)]T may be written in

matrix form

A · y = b = b0 + BN,ξ b1 + N 2
,ξ b2 + N,ξξ b3, (4.19)

where

A =




U (0)
n ρ(0) 0[

U (0)
n

]2
2U (0)

n ρ(0) 1

− γp(0)

(γ − 1)
[
ρ(0)

]2
U (0)

n

γ

(γ − 1)ρ(0)


, (4.20)

b0 =




Un0ρ
(1)
N + ρ0U

(1)
nN + κ

∫ λ

0

1

r

(
U (0)

n + 1
)
dλ

p
(1)
N + U 2

n0ρ
(1)
N − 2U

(1)
nN + κ

∫ λ

0

U (0)
n

r

(
U (0)

n + 1
)
dλ

Un0U
(1)
nN +

γ

(γ − 1)ρ0

p
(1)
N − γp0

(γ − 1)ρ2
0

ρ
(1)
N




, (4.21)

b1 =




ρ(0) − ρ0

0(
U (0)

n − Un0

)

, b2 =




−ρ(0)
(
U (0)

n − Un0

)
(
U (0)

n − Un0

)
−1

2

(
U (0)

n − Un0

)2


, (4.22)

b3 =




−
∫ λ

0

U (0)
n − Un0

r
dλ

−
∫ λ

0

U (0)
n

r

(
U (0)

n − Un0

)
dλ

0




. (4.23)
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The inverse of A is given by

A−1 =

(γ − 1)

η




U (0)
n

(γ + 1)

(γ − 1)
− γ

(γ − 1)
ρ(0)

−
γ
([

U (0)
n

]2
+ p(0)

/
ρ(0)

)
(γ − 1)ρ(0)

U (0)
n γ

(γ − 1)ρ(0)
−U (0)

n

U (0)
n

([
U (0)

n

]2
+

2γ

(γ − 1)

p(0)

ρ(0)

)
−

([
U (0)

n

]2
+

γ

(γ − 1)

p(0)

ρ(0)

) [
U (0)

n

]2
ρ(0)




,

(4.24)

which is singular as λ→ 1, where η → 0. In order to invert the relation (4.19), a
regularization condition must be invoked, which amounts to setting any line of
the matrix A−1 · b = 0 at λ = 1. The result is a propagation law for the motion of the
detonation front: a relationship between the detonation velocity D(1)

n , the curvature κ

and various arclength derivatives of the transition interface N , given by

α1D
(1)
n + α2Nκ + α3κ + α4BN,ξ + α5N

2
,ξ + α6N,ξξ = 0, (4.25)

where

α1 = − (1 − δ2)

(γ − 1)(γ + δ)
, α2 =

(2γ − (γ − 1)δ)(1 − δ)

(γ − 1)(γ + 1)((γ − 1) + 2δ)
(4.26)

α3 = −3

k

(1 − δ)

(γ + 1)(γ − 1)

(
δ +

14γ (1 − δ)

9(γ + 1)

)
, α4 =

(1 − δ)(3γ − 1 − (γ − 3)δ)

(γ − 1)(γ − 1 + 2δ)(γ + δ)

(4.27)

α5 = − (1 − δ)(3γ − 1 − (γ − 3)δ)

2(γ − 1)(γ + 1)(γ + δ)
, α6 = − (1 − δ)

3k(γ + 1)2(γ − 1)
(4γ − (γ − 3)δ).

(4.28)

It is easily demonstrated that α1 < 0, α2 > 0, α3 < 0, α4 > 0, α5 < 0, α6 < 0.

The evolution law (4.25) has been derived assuming a geometry that allows for
two-dimensional flow variations. When the detonation wave is perfectly cylindrically
or spherically expanding, transverse flow derivatives are zero, and (4.25) reduces to

D(1)
n +

α2

aα1

ln
[
1 − aκ exp

(
bD(1)

n

)]
+

α3

α1

κ = 0, (4.29)

a relation between the detonation velocity D(1)
n and the curvature κ.

Before proceding, an important implication of the role of transverse derivatives can
be seen by combining (4.5)–(4.9) in the form of a ‘Master’ equation (Bdzil 1981),[

c2

(
1 + εN2

,ξ + ε
N,ξ

Un

(uξ + B)

)
− U 2

n

(
1 − ε

N,ξ

Un

(uξ + B)

)]
∂Un

∂m

= (γ − 1)qr − εc2κ(Un + Dn) + εc2N,ξξ (Un − Un0). (4.30)

This shows that for the main reaction layer solution to pass through a point where
the coefficient of ∂Un/∂m vanishes, the right-hand side of (4.30) must be zero at
that point. In the absence of arclength variations, this restricts quasi-steady solutions
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to diverging waves where κ > 0, since (γ − 1)qr > 0. When arclength variations are
included no such restriction is present. In particular, for converging waves where κ < 0,
the right-hand side can still vanish provided N,ξξ > 0, where Un − Un0 < 0. Arclength
variations provide a way in which regions of quasi-steady converging detonation
fronts may exist. Such situations are demonstrated below.

4.2. Analysis for k � 1

The evolution equation (4.25) has been derived assuming that the rate constant in
the main reaction layer k = O(1), i.e. for the case where the length of the main
reaction layer is of the order of the induction zone. However, when the rate constant
k � 1, the length of the main reaction layer is smaller than that of the induction zone
layer. In the limit k → ∞, the main reaction layer becomes a jump discontinuity. The
corresponding evolution equation for the detonation front can be derived in a similar
manner to that above. For formal bookkeeping purposes, suppose k = O(1/

√
ε).

Defining

k̄ =
√

εk, (4.31)

the rate equation (4.9) suggests a rescaling of the form

m =
√

εm̄. (4.32)

The mass, momentum and energy equations (4.5), (4.6) and (4.8) indicate that the
only terms that survive at O(ε) on the right-hand sides are those that involve the
partial m derivatives. A perturbation analysis leads to the evolution equation

α1D
(1)
n + α2Nκ + α4BN,ξ + α5N

2
,ξ = 0, (4.33)

which is precisely the equation obtained from (4.25) in the limit k � 1, where α1, α6 →
0. For cylindrically curved waves (4.33) becomes

D(1)
n +

α2

aα1

ln
[
1 − aκ exp

(
bD(1)

n

)]
= 0, (4.34)

which has the same form as that previously obtained by Yao & Stewart (1995),
Klein et al. (1994) and He & Clavin (1994). It has been shown here to apply only to
cylindrically symmetric waves and thin main reaction layers.

4.3. Analysis for k � 1

When the rate constant k � 1, the length of the main reaction layer is larger than that
of the induction zone layer. For bookkeeping purposes, suppose k = O(

√
ε). Defining

k̄ = k/
√

ε, (4.35)

the rate equation (4.9) suggests a rescaling of the form

m = m̄/
√

ε. (4.36)

The mass (4.5), momentum (4.6), ξ -momentum (4.7), and energy (4.8) equations then
become

mass:
∂

∂m̄
(ρUn) = −

√
εκρ(Un + Dn) −

√
ερ

∂uξ

∂ξ
, (4.37)

n-momentum:
∂

∂m̄

(
p + ρU 2

n

)
=

√
εκ(Un + Dn) +

√
ε
∂uξ

∂ξ
, (4.38)
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ξ -momentum:

∂uξ

∂m̄
= −N,ξ

∂Un

∂m̄
, (4.39)

energy:

∂

∂m̄

(
U 2

n

2
+

c2

(γ − 1)
− qλ

)
= 0. (4.40)

Thus O(
√

ε) perturbations are generated in the main reaction layer arising from cur-
vature terms that are O(

√
ε) on the scale of the main reaction layer and from O(

√
ε)

transverse flow velocity perturbations that are generated by the deflection of the
transition layer N. A perturbation solution may now be found in the form

ρ ∼ ρ(0) +
√

ερ(1), p ∼ p(0) +
√

εp(1) , Un ∼ U (0)
n +

√
εU (1)

n , (4.41)

where ρ(1) = p(1) = U (1)
n = 0 at n= N (ξ ), since the induction zone perturbations are

O(ε). Again, an analysis similar to that above leads an evolution equation which
takes the form

ᾱ3κ + ᾱ6N,ξξ = 0, (4.42)

where ᾱ3 = kα3 and ᾱ6 = kα6. This is precisely the equation obtained through (4.25)
for any k � 1, where α1, α6 � 1.

Equations (4.25), (4.29), (4.33), (4.34) and (4.42) represent various forms and limits
of detonation front evolution equations for the two-step chain-branching reaction
model presented in § 2. Below we investigate the properties of these equations and
their implications for detonation initiation studies.

5. Cylindrically and spherically curved waves
The evolution equations for k = O(1), (4.29), and for k � 1, (4.34), represent

detonation velocity–curvature laws for exactly cylindrically or spherically expanding
waves. We emphasize that this is the only circumstance in which arclength variations
can generally be ignored for highly state-sensitive reactions. Equation (4.29) is a
generalization of the previously derived (4.34) (Yao & Stewart 1995; He & Clavin
1994; Klein et al. 1994), which now accounts for the presence of a main reaction layer
of finite extent.

The difference between (4.29) and (4.34) can be interpreted in the context of the
three-step chain-branching reaction model studied in Short & Quirk (1997). Here
the ratio of the length of the chain-induction to chain-termination regions is set
by the chain-branching cross-over temperature TB. When TB is sufficiently close to
a given detonation shock temperature, the chain-induction zone is dominant and
the main reaction layer can legitimately be replaced by a discontinuous heat release
region (the classical square-wave). This structure relates to the limit k � 1 above,
(4.34). As TB is reduced, the chain-induction region shrinks, and the structure of the
chain-branching region must be included. We have derived a modified detonation
velocity–curvature law (4.29) for cylindrically or spherically expanding waves that
accounts for the presence of a finite region of heat release.

For given characteristic detonation parameter values, (4.29) and (4.34) lead to
multi-valued detonation velocity–curvature responses. A critical value of curvature κc

exists beyond which no quasi-steady solution exists that has a main reaction layer
structure that passes through a sonic line. Presumably, unsteady effects acting on a
curved detonation that has κ > κc may either attract the detonation to a steady solu-
tion having κ < κc (or some solution that bifurcates from the branch of steady
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Figure 3. Solutions of (4.29) and (4.34): (a) D
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Figure 4. Solutions of (4.34), D
(1)
n vs.Rk for k = 2 (dash-dot), k = 1 (dash), k = 0.5 (dot),

k = 0.1 (solid). Parameters are δ = 0.182 (Q = 5), and γ = 1.2.

solutions for κ < κc if these are unstable), or cause continuous erosion of the shock
front and hence detonation failure.

D(1)
n –κ responses for several values of the rate constant k obtained from (4.29), and

for k = ∞ obtained from (4.34) are shown in figure 3(a). Here the curvature scale
is based on the inverse of the physical induction zone length. A better choice would
be to base these scalings on the inverse of the physical length of the main reaction
layer, since the reaction rate in this layer is independent of the thermodynamic state
and thus is not likely to vary substantially between different detonation shock states.
For instance, in the three-step reaction studied by Short & Quirk (1997), it is the
induction zone length which varies substantially with varying cross-over temperature
TB. Figure 3(b) shows D(1)

n plotted against κ/k, where the critical curvature κc/k

increases as k is decreased, i.e. the induction zone becomes shorter. Thus this is the
response expected by decreasing TB in Short & Quirk (1997). Figure 4 is the same
but with D(1)

n plotted against the shock radius R(= 2/κ) for a spherically expanding
wave, scaled with the rate constant k.

He & Clavin (1994) have suggested that conditions at the critical turning point
can be used to provide a critical initiation energy Ec for detonation. Their idea is to
replace the shock radius and velocity in the self-similar blast wave initiation energy
formula (Taylor 1950) by those at the critical turning point in the above quasi-steady
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Figure 5. Variation of the critical initiation energy Ec (J) with rate constant k for a
spherically expanding wave.

analysis, Uc and Rc, i.e.

Ec = Aj

(
j + 3

2

)2

ρ0U
2
c Rj+1

c , (5.1)

where j = 1 for cylindrical waves and j = 2 for spherical waves. This is on the basis
that the supplied initiation energy must induce a shock of sufficient radius that
exceeds the critical shock radius Rc for a detonation to result. The energy integral
constant Aj is given by Korobenikov (1991):

A2 = 0.31246(γ − 1)−1.1409−0.11735 log10(γ −1) (5.2)

for a spherical wave (Eckett, Quirk & Shepherd 2000). Thus figure 4 also shows the
variation in critical shock radius for various ratios of induction layer size to main
reaction layer size defined by k. Thus if the extent of the main reaction layer is fixed,
a smaller critical shock radius results as the extent of the induction zone decreases
(or TB decreases in the model of Short & Quirk (1997), a conclusion that has been
verified recently by direct numerical simulation (Short, Sharpe & Bdzil 2001).

Figure 5 shows how the critical initiation energy (5.1) would vary with rate constant
k, for a detonation which runs at a one-dimensional steady Chapman–Jouguet velocity
of 1800 m s−1, initial density ρ0 = 1.1741 kg m−3, γ = 1.2 and ε = 1/14, in which the
main reaction layer extent is kept fixed at 5 × 10−3 m. Consequently, in the context of
the three-step model (Short & Quirk 1997), the energy required to initiate a detonation
would increase as the chain-branching cross-over temperature increased, a trend also
verified in Short et al. (2001).

Direct numerical simulation calculations of detonation initiation, using the current
two-step reaction model will be presented in a future article to ascertain the accuracy
of the initiation energy trends predicted by the above asymptotic model for a deton-
ation with separate induction and main reaction layers. It should also be noted that
some recent studies have argued that quantitatively accurate predictions of critical ini-
tiation energies should incorporate unsteady effects (Lee & Higgins 1999; Eckett, et al.
2000). Extensions of the current steady analysis to include unsteadiness, arclength
variations and the effects of separate induction and main reaction zone layers will
also be considered in a future article. However, it should be noted that Short et al.
(2001) have found that for initiation studies based on the three-step chain-branching
model, the notion that one can predict criticality based on the critical curvature point
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associated with a steady analysis remains a valid one for both stable and unstable
detonation waves for that particular reaction model.

6. Steady curved waves with arclength variations
We have demonstrated that for a detonation propagating in a mixture that has a

high degree of state sensitivity, variations of the shock curvature and velocity with
arclength cannot be ignored in general. Two situations where such variations may be
important are the cellular structures observed in gaseous detonations and the axial
propagation of a steady curved detonation in a cylindrical stick of high explosive
(also known as a rate-stick (Bdzil 1981)).

Detonations propagating in gaseous explosives are nearly always observed to have a
cellular nature, consisting of time-varying, weakly curved, periodic bulges of the shock
front, separated by Mach stems, which arise due to a multi-dimensional instability
of the planar detonation front (Fickett & Davis 1979). Two-dimensional numerical
calculations of cellular detonations (e.g. Bourlioux & Majda 1992; Sharpe & Falle
2000; Sharpe 2001) appear to indicate non-trivial variations of the shock curvature
with arclength in these periodic sections. Although cellular detonations are time-
evolving structures, typical cell widths can be of the order of one hundred times
longer than the one-dimensional reaction zone thickness, and so it is important to
realize that cellular detonations evolve in a slowly varying fashion. Consequently, it
seems reasonable to ask if the steady solutions predicted for example by (4.25) will
be an important factor in the evolution of cellular detonations, in which time-varying
effects could be incorporated in a consistent perturbative manner. Indeed, this is the
strategy adopted by Yao & Stewart (1996) in deriving a detonation cell evolution
equation, one which does not take into account arclength variations.

For a detonation propagating axially in a cylindrical stick of high explosive, the
speed of propagation of the wave is determined by conditions at the stick edge.
Typically the rate stick is encased in an inert metallic material and the properties of
this material determine how the combustion products may expand at the edge, i.e. the
liner provides a confinement effect. Boundary conditions to be satisfied at the edge
are then determined by specifying information about the shape of the streamlines
there. For state-sensitive systems, the propagation of a detonation in a rate stick
must include variations in curvature and velocity with arclength along the detonation
shock.

Given this information, we will now examine some possible steady solutions of the
new evolution law (4.25) related to the two problems discussed above. The calculations
presented below are by no means exhaustive, due to the extensive parameter space
that would need to be explored in general, but are representative of the behaviour
one may expect to observe. More extensive studies of the steady solutions of (4.25)
will be presented in a future article.

We assume a detonation that propagates with a constant velocity Da in the axial
direction in a rate stick or rectangular shock tube. Then at every point along the
detonation shock the detonation velocity Dn (figure 6) is

Dn = Da cos φ̄. (6.1)

For small shock angles, we may write

D(1)
n = D(1)

a − φ2

2
, (6.2)
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Figure 6. A schematic of a curved detonation shock propagating along along a rate stick.

where Da ∼ 1 + εD(1)
a and D(1)

a is a constant. Therefore,

D
(1)
n,ξ = −φφ,ξ = −φκ. (6.3)

An equation which relates the variation of Nξ with ξ can be obtained by re-arranging
(4.25),

d

dξ
(N,ξ ) = − 1

α6

[
α5N

2
,ξ + α4BN,ξ + α3κ + α2Nκ + α1D

(1)
n

]
, (6.4)

where the B-term appearing in (6.4) can be determined from the geometric identities
(2.12). Equation (2.12b) can be integrated to give

B ∼ φ + A, (6.5)

for constant A. Equation (2.12a) implies A = 0 when compared with (6.2) Similarly,
an equation which relates the variation of κ with ξ can be obtained by re-arranging
(3.15),

dκ

dξ
= − κ

N
(
1 − aκebD

(1)
n

)
+ ebD

(1)
n

[(
1 − aκebD

(1)
n

)
N,ξ + bD

(1)
n,ξe

bD
(1)
n

]
. (6.6)

Finally φ and κ are related by

dφ

dξ
= κ. (6.7)

Thus with (3.13), equations (6.4), (6.6) and (6.7) represent a set of three coupled
differential equations which determine κ, Dn and N as a function of ξ when
supplemented by appropriate boundary conditions. Note that (6.4), (6.6) and (6.7)
are invariant under the transformation ξ → −ξ, φ → −φ. The relationship between
the transverse coordinate in a Cartesian system or the radius of a rate stick r and the
arclength ξ in the Bertrand system is given by

r,ξ = cos(φ̄), (6.8)

so that r ∼ ξ.

Periodic solutions to the system (6.4), (6.6) and (6.7), which could be relevant to
the weakly nonlinear propagation of periodic cellular structures in gaseous mixtures
slightly above marginal stability, are obtained by applying the symmetry boundary
conditions

φ = 0, N,ξ = 0, D
(1)
n,ξ = 0, κ,ξ = 0 (6.9)

at two points ξ = 0 and ξ = ξe. For an initial guess of the axial velocity D(1)
a and

curvature κ at ξ = 0, (6.2) to (6.7) are integrated to the point ξ = ξe, and D(1)
a and κ

at ξ = 0 iterated until (6.9) at ξ = ξe is satisfied. Figure 7 shows one possible periodic
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Figure 7. (a) Change in curvature with ξ along a periodically varying detonation shock front
with Q = 5, γ = 1.2 and k = 0.5. The wavelength is r ∼ ξ = 2. (b, c) Corresponding variations

of N and D
(1)
n .

(a)0.024

0.020

0.016

0.012

κ

0.2 0.4 0.6 0.8 1.0 1.2
k

0.2 0.4 0.6 0.8 1.0 1.2
k

–0.02

–0.03

–0.04

–0.05

–0.06

Dn
(1)

(b)

Figure 8. Variation of the curvature κ and velocity D
(1)
n at ξ = 0 with rate constant k for a

periodically varying detonation front with Q = 5, γ = 1.2, and wavelength r ∼ ξ = 2.

structure obtained for Q = 5, γ = 1.2, and a rate constant k = 0.5 with ξe = 1. Of
particular note in figure 7(a) is the marked variation and change in sign of κ with
arclength ξ over a typical period. The latter represents a transition from a diverging
to converging section of the shock front. Figure 7(b) shows the lag in the location of
the transition zone N due to variations in the detonation velocity and curvature with
arclength. Figure 8 shows the variation of κ and D(1)

n at ξ = 0 with rate constant k

for a periodically varying detonation front with Q = 5, γ = 1.2 and ξe = 1.
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Figure 9. (a) Variation of curvature with arclength along a detonation shock propagating in
a rate stick of radius r ∼ ξ = 0.5 with edge conditions κ,ξ = −1, φ = 0.25 for Q = 10, γ = 3

and k = 0.5. (b, c) Corresponding variations of N and D
(1)
n .

Solutions to the rate-stick problem which account for arclength variations are
obtained by applying (6.9) on the axis ξ = 0. Edge conditions at ξ = ξe are determined
by providing information on how the detonation front and combustion products are
confined at the stick edge. We refer the reader to Stewart & Bdzil (1988b) and Aslam,
Bdzil & Stewart (1996) for more details. For the present case, we will specify the
shock angle φ and the gradient of curvature with arclength κ,ξ , conditions that are,
in principle, sufficient to specify the streamline deflection occurring at the edge of
the stick for the higher-order system under study. Further research, involving a local
asymptotic analysis near the edge of the rate stick, is currently being conducted in
order to construct the boundary conditions that would be relevant to a particular
confinement material as in Aslam et al. (1996). Equations (6.2) to (6.7) are then
integrated from ξ = 0 to ξ = ξe, the stick radius, and D(1)

a and κ at ξ = 0 adjusted
until the given values of κ,ξ and φ on the stick edge are satisfied.

Figure 9 shows one possible solution of the variation of κ, N and D(1)
n with

arclength along a detonation shock propagating in a rate stick of radius r ∼ ξ = 0.5
with edge conditions κ,ξ = −1, φ = 0.25 for Q = 10, k = 0.5, and γ = 3, chosen
to represent the behaviour in a solid explosive. Again substantial variations in κ are
observed in figure 9(a), with κ decreasing from a maximum on the stick axis to a
minimum on the stick edge. Figure 9(b) shows the corresponding lag in the location
of the transition interface N.

Of particular interest is figure 10, which shows the variation of κ and D(1)
n on the

stick axis with rate constant k for a detonation having the parameter values defined in



Curved detonations 61

0.7

0.6

0.5

0.4
0.6 0.80.2 0.4

(a)

κ

k
0.6 0.80.2 0.4

(b)

k

0

–2

–4

–6

–8

–10

Dn
(1)

Figure 10. Variation of the axial curvature κ and velocity D
(1)
n with rate constant k for a

detonation in a rate stick with Q = 10, γ = 3, having edge conditions κ,ξ = −1, φ = 0.25, for
three stick radii: r ∼ ξ = 0.4 (dashed line), r ∼ ξ = 0.5 (solid line), and r ∼ ξ = 0.6 (dotted
line).

figure 9 for three different stick radii, r ∼ ξ = 0.4, 0.5, 0.6. They show a multi-valued
response where, for a given stick radius, there are no solutions if the rate constant is too
large. The upper and lower branches of figure 10(a) correspond directly to the upper
and lower branches of figure 10(b). Thus if the rate constant is either too large for a
given radius, i.e. the ratio of the length of the main reaction layer over the induction
layer is too small, or the radius too small for a given rate constant, there are no steady
solutions of the system (6.2)–(6.7). Since decreasing k corresponds to a widening of
the main reaction layer relative to the induction zone, curved detonations may exist
in sticks of small radii if the main reaction layer is sufficiently long. Thus detonations
reacting according to the rate law (2.4) with larger rate constants need larger radii
for a steady solution to exist.

7. Summary
An important extension to the theory of detonation shock dynamics has been

presented for a steady, near-CJ, weakly curved detonation with a model chain-
branching reaction having two components, beginning with a thermally neutral
induction zone whose length is governed by an Arrhenius reaction rate with an inverse
activation energy ε. This terminates along a curve N (ξ ) where conversion of fuel into
an intermediate species (chain radical) occurs, which is followed by an exothermic
main reaction layer or chain-recombination zone having a temperature-independent
reaction rate with rate constant k. The ratio of the length of the induction zone to
the main reaction layer is controlled by k. Deviations of the detonation velocity Dn

from the planar steady value are O(ε), which sets the shock angle amplitude to be
O(

√
ε). Making the ansatz that curvature should induce an O(ε) flow divergence in

the induction zone sets the arclength (or transverse flow) scale to be O(1/
√

ε).
Based on these scales an analysis of the induction zone leads us to conclude that

O(ε) variations in Dn lead to O(1) variations in the distance between the shock and
transition interface N as the arclength ξ varies along the shock. It is this variation
that results in the generation of O(ε) transverse flow and arclength changes in the
main reaction layer of the detonation, changes that appear at the same order as terms
that arise due to the influence of shock curvature. A regularization condition arising
from the near-CJ propagation speed of the detonation leads to a propagation law for
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the motion of the detonation front: a relationship between the detonation velocity
Dn, the shock curvature κ and various arclength derivatives of the transition interface
N. It is also shown that arclength variations provide a mechanism for the theoretical
existence of a converging steady non-planar detonation front. Arclength variations
can only generally be ignored when the detonation is expanding in either an exactly
cylindrical or spherical manner.

We have shown results that compare the variation of the detonation velocity with
curvature for spherically propagating detonations with the previously studied one-
step large-activation-energy system and the present model two-step chain-branching
reaction. We also discuss the implications that chain-branching reaction kinetics has
for predictions of critical detonation initiation energy based on detonation-velocity
curvature laws. In particular, we find that for a main reaction layer of fixed length,
the initiation energy increases as the length of the induction layer increases. In the
context of a three-step chain-branching model previously studied by Short & Quirk
(1997), the energy required to initiate a detonation would increase as the chain-
branching cross-over temperature increased. Finally some calculations that illustrate
the important effect that arclength and transverse flow variations may have on the
steady propagation of non-planar detonation fronts were conducted, in particular
for some rate-stick calculations where the detonation velocity was shown to vary
significantly with arclength. This is in contrast to the previous theories of detonation
shock dynamics where the detonation velocity was purely a function of the shock
curvature to leading order. However, such significant variation of the detonation
velocity with arclength has been observed, for example, in recent unpublished rate-
stick calculations on the explosive ANFO, ammonium nitrate and fuel oil, and work
is currently being conducted to fit the observed variations to the propagation law
(4.25).

Finally, we note that an important extension of the current work is to investigate
the stability of the steady propagation laws derived here, and to construct appropriate
time-dependent evolution laws when they are unstable, as in Short (2001) for the one-
dimensional case. In general, though, this is a difficult task due to the large number
of limiting cases that need to be investigated. For the two-component reaction model,
the underlying steady wave can have three limiting forms, namely an induction one
that is shorter, of the same order as, or longer than the main reaction zone layer.
Additionally, there are many possible scales for the curvature of the shock front,
which may or may not influence the induction and main reaction layer structures,
depending on their relative scale. However, some form of (4.25) should contain
the leading-order steady structure in all these cases. Such a study is currently in
progress.

M. S. was funded by the AFOSR and DOE LANL.

Appendix. Reactive-Euler equations
Using intrinsic, shock-based, Bertrand coordinates, the compressible reactive Euler

equations are given by

mass:

(ρUn),n = −ωµ
κρ(Un + Dn)

1 + ωµnκ
− µ2 (ρuξ ),ξ

1 + ωµnκ
− µ

(
ωB +

µnDn,ξ

1 + ωµnκ

)
ρ,ξ , (A 1)
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n-momentum:

UnUn,n +
1

ρ
p,n = −µ

(
ωB + µ

uξ + nDn,ξ

1 + ωµnκ

)(
Un,ξ + Dn,ξ

)
+

µ3ωu2
ξ κ

1 + ωµnκ
− µ2 uξDn,ξ

1 + ωµnκ
, (A 2)

ξ -momentum:

Unuξ,n = − p,ξ

ρ(1 + ωµnκ)
− µ

(
ωB + µ

uξ + nDn,ξ

1 + ωµnκ

)
uξ,ξ − (Un + Dn)

ωµκuξ − Dn,ξ

1 + ωµnκ
,

(A 3)

energy:

Une,n − p

ρ2
Unρ,n = −µ

(
ωB + µ

uξ + nDn,ξ

1 + ωµnκ

)(
e,ξ − p

ρ2
ρ,ξ

)
, (A 4)

reaction:

Unλi,n = ri − µ

(
ωB + µ

uξ + nDn,ξ

1 + ωµnκ

)
λi,ξ , (A 5)

for density ρ, pressure p, normal velocity Un, transverse velocity uξ , specific internal
energy e, reaction progress variable for the ith reaction λi with rate ri . The parameters
ω and µ are defined as the shock angle scale and arclength scale respectively.
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